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Distinguishing fractional and white noise in one and two dimensions
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We discuss the link between uncorrelated noise and the Hurst exponent for one- and two-dimensional
interfaces. We show that long range correlations cannot be observed using one-dimensional cuts through
two-dimensional self-affine surfaces whose height distributions are characterized by a Hurst ekplomest
than —1/2. In this domain, fractional and white noise are not distinguishable. A method analyzing the corre-
lations in two dimensions is necessary. For —1/2, a crossover regime leads to an systematic overestimate
of the Hurst exponent.
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Self-affine surfaces are abundant in Nature. They are thBlumerous tools exist for measuring Hurst exponents in the
bread and butter of quantitative characterization of growtlrange 6<H< 1. Few of these methods have been tested sys-
phenomena such as fracture surfafek interface growth, tematically in the rangél <0 [8].
and roughening phenomefy]. The power spectrum of a self-affine trawéx), character-

A self-affine surfaceh(x,y) is defined by its behavior ized by a Hurst exponer, is given in one dimension by
under the scale transformatip®8]

1 . . .
X—\X, P(k)~ k“—ZH (in one dimensiop (2)
y—Ay, 1) while the power spectrum of a two-dimensional self-affine
Hoth surfaceh(x,y), characterized by the same Hurst exponent, is
—ANh,
1 . . .
whereH is the Hurst exponent. P(k)~ k2+—2H (in two dimensions 3)

Most commonly, the Hurst exponent is in the interval 0
<H=1. For instance, fracture surfaces exhibit a Hurst ex-
ponent close to 0.81]. Sea floor topography is self-affine
with a Hurst exponent close to 0/8]. When H>1, the
surface is no longer asymptotically flat. Whéh<O0, the
roughness distribution of the surface is referred tdras-
tional noise.Fractional noise is typically encountered in Na- 1
ture in quantities that depend on the local slope of the topog- Hwyn=— > (4)
raphy: mechanical stresses, light scattering, and fluid flow
[5,6]. For instanpe, the stress fiel_d on the interface betv_veem,h”e from Eq.(3), for the two-dimensional case we find
two rough elastic blocks forced into complete contact is a
fractional noise with a Hurst exponeht,, related to the Hyn=—1. (5)
Hurst exponent of the rough surfaeeasH, =H—1 [7].

In this Brief Report we show that, for values Hfin the  This result is unexpected. One would have expected the
range[ —1,— 1/2], self-affinity takes on very different char- value of the Hurst exponent corresponding to white noise to
acter in one and two dimensions. If this difference is ignoredpe independent of dimension.
one may obtain incorrect results when analyzing experimen- This result is even more paradoxical when we analyze
tal data, no matter what method one uses for estimating cutsthrough a two-dimensional self-affine surface. Suppose

one is given a two-dimensional surface with a Hurst expo-
nentH=—1/2, and is asked to determitt Analyzing the
*Permanent address: Department of Physics, NTNU, N—749iwo-dimensionapower spectrum of this surface will lead to
Trondheim, Norway. P(k)~1/k — a 1 spectrum, while analyzing the power

White, i.e., uncorrelated noise, has a constant power spec-
* trum both in one and two dimensions. Consequently, the
value of the Hurst exponerd which describes white noise

in one dimension is obtained from E®),
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FIG. 1. One-dimensional cut through a two-dimensional self-
affine surface withH= —1/2 (upper curvg and H=—1.0 (lower

o FIG. 3. Measured Hurst exponét,.svs Hurst exponerit for
curve.

two-dimensional surfaces. Circles are based on power spectra mea-
surements along one-dimensional cuts, stars are based on AWC
analysis along one-dimensional cuts, and filled lozenges are based
spectrum ofone-dimensional cutsrough the surface yields on two-dimensional power spectra measurements.
white noise. We illustrate this point in Fig. 1 where we show
one-dimensional cuts through two-dimensional surfaces with
H=—1/2 and—1, respectively. The synthetic surfaces werethe Hurst exponent in the rangel<H=<—1/2 yields the
generated using a Fourier technidde9]. In Fig. 2 we show input value ofH. This is illustrated in Fig. 4. When compar-
their one-dimensional power spectra. ing Fig. 5, showing a one-dimensional self-affine trace with
Yet a third problem is seen when analyzing a two-H=—-1 with a one-dimensional cut through a two-
dimensional self-affine surface with a Hurst exponent in thedimensional self-affine surface with the same Hurst expo-
range— 1<H=—1/2. Analyzing the correlations in the sur- nent, we see a clear difference between the two traces. It is
face using the two-dimensional power spectrum yields thehis difference that the different measuring methods pick up.
correct value —1s<H=<-1/2. However, analyzing one- This unexpected situation was recently encountered in the
dimensional cuts through the two-dimensional surface usingnalysis of the stress field of elastic self-affine surfaces in
the one-dimensional power spectrum method or the averadell contact[7]. As mentioned above, if the elastic surfaces
wavelet coefficienf AWC) method[10,1] yields thecon-  are characterized by a Hurst exponéhtthe corresponding
stantvalue H=—1/2. This is illustrated in Fig. 3. On the stress field has a Hurst exponéhj=H— 1. However, when
other hand, analyzing one-dimensional traces generated with
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FIG. 4. Measured Hurst exponéft,.svs Hurst exponerit for

FIG. 2. One-dimensional power spectra of the two self-affineone-dimensional traces. Circles are based on power spectra mea-
curves of Fig. 1. Circles refer téd=—1.0, and plus signs to surements in one dimension, and stars are based on AWC analysis
H=-0.5. in one dimension.
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FIG. 5. A one-dimensional self-affine trace with=—1.

analyzing the stress using one-dimensional ddts,always
saturated at the value 1/2 asH was lowered to values be-
low 1/2.
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N—1
F\(kx 1ny) — E e(271'i/N)kyr'|y

Y

7(Ky aky) 9)
(k)2(+ ki)(H+l)/2 ’

From this expression, we readily construct the power spec-
trum along the cuhy = const,

Py (ky) =[h(ky,0)[2+[h(N—k,,0)[?, (10)

where for simplicity, and without loss of generality, we have
setn,=0. Using Eq.(7), we find

N—-1

In order to understand what lies behind this unexpected

behavior, we need a model self-affine surface that is acces-
sible to analytical calculations. The model we choose is
based on the Fourier method to generate self-affine surfaces.

We discretize the surface, assuming it to g, ,ny),
where 0<n,<N-1 and O<n,<N-—1 are the positions of

P (k)= 2D > 1 N 1
yATX N2 =0 (k)2(+k2)l+H [k)2(+(N_k)2]l+H '
11
For largeN, this equation may be simplified to
2D 1 N/ky dz
Py (k) = N2 k)1(+2HJO (1+22)1+H (12

ForH>—1/2, the integral in this equation approaches a con-

the nodes on a two-dimensional square lattice. The surfacgant rapidly asN— . However, forH<— 1/2, it behaves as

may be represented in Fourier space as

N—-1 N-1

h(nX'ny):E 2 e(2mi/N) [kyny +kyny]
Ke=0 Ky=0

(k>2<+ ki)(H+l)/2’

(6)

where n(n,,ny) is a white (Gaussiah noise defined by a
zero mean and a second moment satisfying

(7 k) (K3 K5))= 2D 8B s 0

We see immediately from Eg6) that forH=—1, h(n,,n,)

(k,/N)**2H for largeN. Thus we conclude that

(1/kx)1+ 2H
const

for H>—-1/2,

forH=—-1/2. (13

Py( kx) -~ {

This is precisely the behavior we see in Fig. 3. On the other
hand, the power spectrum we find for the one-dimensional
surface[Eq. (8)] is simply that of Eq(2) irrespective of the
Hurst exponent.

One important lesson we draw from this problem and its
resolution is that the Hurst exponent doex fully describe
the correlations of self-affine surfaces: A two-dimensional
surface with a given Hurst exponent may have completely

is white noise, as we are then Fourier transforming the whit&lifférent correlations from a one-dimensional surface, pro-

noise n(ky,ky) directly.
A one-dimensional self-affine trace, on the other hand
may be written

N—-1
h( nx) — E e(27'1'i/N)anX

7(Ky)

H+1°
kX

®)

X

where n(k,) is again white noise.

In order to study a one-dimensional cut through the two-

dimensional surfacé(n,,n,), we place the cut along the
axis and Fourier transfori(n,,n,) in the x direction only.
This gives us

vided the Hurst exponent is low enough.

Another important, but related lesson, is that measuring
the self-affine properties of a surface by averaging over one-
dimensional cuts — which is the standard experimental ap-
proach — may lead to incorrect results. In fact, it via®w-
ing the correct scaling of the stress field studied in Réf,
and comparing this with the measured quantities, that led to
this work. Two-dimensional surfaces should preferably be
analyzed using two-dimensional tools.
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