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Distinguishing fractional and white noise in one and two dimensions
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We discuss the link between uncorrelated noise and the Hurst exponent for one- and two-dimensional
interfaces. We show that long range correlations cannot be observed using one-dimensional cuts through
two-dimensional self-affine surfaces whose height distributions are characterized by a Hurst exponentH lower
than21/2. In this domain, fractional and white noise are not distinguishable. A method analyzing the corre-
lations in two dimensions is necessary. ForH.21/2, a crossover regime leads to an systematic overestimate
of the Hurst exponent.
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Self-affine surfaces are abundant in Nature. They are
bread and butter of quantitative characterization of grow
phenomena such as fracture surfaces@1#, interface growth,
and roughening phenomena@2#.

A self-affine surfaceh(x,y) is defined by its behavio
under the scale transformation@3#

x→lx,

y→ly, ~1!

h→lHh,

whereH is the Hurst exponent.
Most commonly, the Hurst exponent is in the interval

<H<1. For instance, fracture surfaces exhibit a Hurst
ponent close to 0.8@1#. Sea floor topography is self-affine
with a Hurst exponent close to 0.5@4#. When H.1, the
surface is no longer asymptotically flat. WhenH,0, the
roughness distribution of the surface is referred to asfrac-
tional noise.Fractional noise is typically encountered in N
ture in quantities that depend on the local slope of the top
raphy: mechanical stresses, light scattering, and fluid fl
@5,6#. For instance, the stress field on the interface betw
two rough elastic blocks forced into complete contact is
fractional noise with a Hurst exponentHs , related to the
Hurst exponent of the rough surfaceH asHs5H21 @7#.

In this Brief Report we show that, for values ofH in the
range@21,21/2#, self-affinity takes on very different char
acter in one and two dimensions. If this difference is ignor
one may obtain incorrect results when analyzing experim
tal data, no matter what method one uses for estimatingH.
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Numerous tools exist for measuring Hurst exponents in
range 0,H,1. Few of these methods have been tested s
tematically in the rangeH,0 @8#.

The power spectrum of a self-affine traceh(x), character-
ized by a Hurst exponentH, is given in one dimension by

P~k!;
1

k112H
~in one dimension!, ~2!

while the power spectrum of a two-dimensional self-affi
surfaceh(x,y), characterized by the same Hurst exponent

P~k!;
1

k212H
~in two dimensions!. ~3!

White, i.e., uncorrelated noise, has a constant power s
trum both in one and two dimensions. Consequently,
value of the Hurst exponentH which describes white noise
in one dimension is obtained from Eq.~2!,

Hwn52
1

2
, ~4!

while from Eq.~3!, for the two-dimensional case we find

Hwn521. ~5!

This result is unexpected. One would have expected
value of the Hurst exponent corresponding to white noise
be independent of dimension.

This result is even more paradoxical when we analy
cuts through a two-dimensional self-affine surface. Suppo
one is given a two-dimensional surface with a Hurst exp
nentH521/2, and is asked to determineH. Analyzing the
two-dimensionalpower spectrum of this surface will lead t
P(k);1/k — a 1/f spectrum, while analyzing the powe
1
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spectrum ofone-dimensional cutsthrough the surface yield
white noise. We illustrate this point in Fig. 1 where we sho
one-dimensional cuts through two-dimensional surfaces w
H521/2 and21, respectively. The synthetic surfaces we
generated using a Fourier technique@4,9#. In Fig. 2 we show
their one-dimensional power spectra.

Yet a third problem is seen when analyzing a tw
dimensional self-affine surface with a Hurst exponent in
range21<H<21/2. Analyzing the correlations in the su
face using the two-dimensional power spectrum yields
correct value 21<H<21/2. However, analyzing one
dimensional cuts through the two-dimensional surface us
the one-dimensional power spectrum method or the ave
wavelet coefficient~AWC! method@10,11# yields thecon-
stant value H521/2. This is illustrated in Fig. 3. On the
other hand, analyzing one-dimensional traces generated

FIG. 1. One-dimensional cut through a two-dimensional s
affine surface withH521/2 ~upper curve! and H521.0 ~lower
curve!.

FIG. 2. One-dimensional power spectra of the two self-affi
curves of Fig. 1. Circles refer toH521.0, and plus signs to
H520.5.
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the Hurst exponent in the range21<H<21/2 yields the
input value ofH. This is illustrated in Fig. 4. When compar
ing Fig. 5, showing a one-dimensional self-affine trace w
H521 with a one-dimensional cut through a two
dimensional self-affine surface with the same Hurst ex
nent, we see a clear difference between the two traces.
this difference that the different measuring methods pick

This unexpected situation was recently encountered in
analysis of the stress field of elastic self-affine surfaces
full contact @7#. As mentioned above, if the elastic surfac
are characterized by a Hurst exponentH, the corresponding
stress field has a Hurst exponentHs5H21. However, when

-

e

FIG. 3. Measured Hurst exponentHmesvs Hurst exponentH for
two-dimensional surfaces. Circles are based on power spectra
surements along one-dimensional cuts, stars are based on A
analysis along one-dimensional cuts, and filled lozenges are b
on two-dimensional power spectra measurements.

FIG. 4. Measured Hurst exponentHmesvs Hurst exponentH for
one-dimensional traces. Circles are based on power spectra
surements in one dimension, and stars are based on AWC ana
in one dimension.
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analyzing the stress using one-dimensional cuts,Hs always
saturated at the value21/2 asH was lowered to values be
low 1/2.

In order to understand what lies behind this unexpec
behavior, we need a model self-affine surface that is ac
sible to analytical calculations. The model we choose
based on the Fourier method to generate self-affine surfa

We discretize the surface, assuming it to beh(nx ,ny),
where 0<nx<N21 and 0<ny<N21 are the positions o
the nodes on a two-dimensional square lattice. The sur
may be represented in Fourier space as

h~nx ,ny!5 (
kx50

N21

(
ky50

N21

e(2p i /N)[kxnx1kyny]
h~kx ,ky!

~kx
21ky

2!(H11)/2
,

~6!

where h(nx ,ny) is a white ~Gaussian! noise defined by a
zero mean and a second moment satisfying

^h~kx ,ky!h~kx8 ,ky8!&52Ddkx ,k
x8
dky ,k

y8
. ~7!

We see immediately from Eq.~6! that forH521, h(nx ,ny)
is white noise, as we are then Fourier transforming the w
noiseh(kx ,ky) directly.

A one-dimensional self-affine trace, on the other ha
may be written

h~nx!5 (
kx50

N21

e(2p i /N)kxnx
h~kx!

kx
H11

, ~8!

whereh(kx) is again white noise.
In order to study a one-dimensional cut through the tw

dimensional surfaceh(nx ,ny), we place the cut along thex
axis and Fourier transformh(nx ,ny) in the x direction only.
This gives us

FIG. 5. A one-dimensional self-affine trace withH521.
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h̃~kx ,ny!5 (
ky50

N21

e(2p i /N)kyny
h~kx ,ky!

~kx
21ky

2!(H11)/2
. ~9!

From this expression, we readily construct the power sp
trum along the cutny5const,

Py~kx!5uh̃~kx,0!u21uh̃~N2kx,0!u2, ~10!

where for simplicity, and without loss of generality, we ha
setny50. Using Eq.~7!, we find

Py~kx!5
2D

N2 (
k50

N21 F 1

~kx
21k2!11H

1
1

@kx
21~N2k!2#11HG .

~11!

For largeN, this equation may be simplified to

Py~kx!5
2D

N2

1

kx
112HE0

N/kx dz

~11z2!11H
. ~12!

For H.21/2, the integral in this equation approaches a c
stant rapidly asN→`. However, forH<21/2, it behaves as
(kx /N)112H for largeN. Thus we conclude that

Py~kx!;H ~1/kx!
112H for H.21/2,

const for H<21/2.
~13!

This is precisely the behavior we see in Fig. 3. On the ot
hand, the power spectrum we find for the one-dimensio
surface@Eq. ~8!# is simply that of Eq.~2! irrespective of the
Hurst exponentH.

One important lesson we draw from this problem and
resolution is that the Hurst exponent doesnot fully describe
the correlations of self-affine surfaces: A two-dimension
surface with a given Hurst exponent may have complet
different correlations from a one-dimensional surface, p
vided the Hurst exponent is low enough.

Another important, but related lesson, is that measur
the self-affine properties of a surface by averaging over o
dimensional cuts — which is the standard experimental
proach — may lead to incorrect results. In fact, it wasknow-
ing the correct scaling of the stress field studied in Ref.@7#,
and comparing this with the measured quantities, that led
this work. Two-dimensional surfaces should preferably
analyzed using two-dimensional tools.
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